LPV system identification under noise corrupted scheduling and output signal observations
نویسندگان
چکیده
Most of the approaches available in the literature for the identification of Linear Parameter-Varying (LPV) systems rely on the assumption that only the measurements of the output signal are corrupted by the noise, while the observations of the scheduling variable are considered to be noise free. However, in practice, this turns out to be an unrealistic assumption in most of the cases, as the scheduling variable is often related to a measured signal and, thus, it is inherently affected by a measurement noise. In this paper, it is shown that neglecting the noise on the scheduling signal, which corresponds to an error-invariables problem, can lead to a significant bias on the estimated parameters. Consequently, in order to overcome this corruptive phenomenon affecting practical use of data-driven LPV modeling, we present an identification scheme to compute a consistent estimate of LPV Input/Output (IO) models from noisy output and scheduling signal observations. A simulation example is provided to prove the effectiveness of the proposed methodology. © 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Robust H2 switching gain-scheduled controller design for switched uncertain LPV systems
In this article, a new approach is proposed to design robust switching gain-scheduled dynamic output feedback control for switched uncertain continuous-time linear parameter varying (LPV) systems. The proposed robust switching gain-scheduled controllers are robustly designed so that the stability and H2-gain performance of the switched closed-loop uncertain LPV system can be guaranteed even und...
متن کاملA Kernel-based Approach to MIMO LPV State-space Identification and Application to a Nonlinear Process System ?
This paper first describes the development of a nonparametric identification method for linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system. The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While parametric identification methods require proper selection of basis functions in order to avoid overparametrization ...
متن کاملLinear Parameter Varying System Identification: State-Space Approaches
Presently, linear parameter varying (LPV) systems are broadly used in a wide range of applications such as in aerospace, energy, health, mechatronics, process control, computational systems, etc. Essentially, an LPV system is a linear system whose parameters are functions of a scheduling signal. It can be described by state-space or input/output models, in continuous or discrete-time. The incre...
متن کاملA convex relaxation approach to set-membership identification of LPV systems
Identification of linear parameter varying models is considered in the paper, under the assumption that both the output and the scheduling parameter measurements are affected by bounded noise. First, the problem of computing parameter uncertainty intervals is formulated in terms of nonconvex optimization. Then, on the basis of the analysis of the regressor structure, we present an ad hoc convex...
متن کاملDirect Identification of Continuous-Time LPV Input/Output Models
Controllers in the linear parameter-varying (LPV) framework are commonly designed in continuoustime (CT) requiring accurate and low-order CT models of the system. However, identification of continuous-time LPV models is largely unsolved, representing a gap between the available LPV identification methods and the needs of control synthesis. In order to bridge this gap, direct identification of C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 53 شماره
صفحات -
تاریخ انتشار 2015